资源类型

期刊论文 359

年份

2023 39

2022 30

2021 39

2020 22

2019 14

2018 13

2017 16

2016 20

2015 23

2014 20

2013 18

2012 17

2011 18

2010 11

2009 18

2008 12

2007 12

2006 3

2004 2

2001 2

展开 ︾

关键词

勘探开发 2

吸附 2

地聚合物 2

核酸检测 2

高含硫 2

&gamma 1

2-羟基丁酸 1

3-酰基硫代四酸 1

Anderson 模型 1

CCK-8 实验 1

CO 1

COVID-19 1

Cas12a 1

Cu(In 1

DHA 和 sn-2 DHA 1

Ga)Se2 1

IEEE80216 1

ITO 1

Kdn 1

展开 ︾

检索范围:

排序: 展示方式:

Improvement of sludge dewaterability with modified cinder via affecting EPS

Weichao Ma, Lei Zhao, Huiling Liu, Qianliang Liu, Jun Ma

《环境科学与工程前沿(英文)》 2017年 第11卷 第6期 doi: 10.1007/s11783-017-0967-x

摘要: The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L , SRF of the sludge decreased from 7.85 × 1012 m·kg to 2.06 × 1012 m·kg , and the filter cake moisture decreased from 85% to 60%. The reconstruction of “floc mass” was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.

关键词: Sludge conditioning     Acid or alkali modified cinder     TB-EPS     Floc mass     Floc reconstruction    

Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified

Yanhui ZHAN, Jianwei LIN, Yanling QIU, Naiyun GAO, Zhiliang ZHU

《环境科学与工程前沿(英文)》 2011年 第5卷 第1期   页码 65-75 doi: 10.1007/s11783-010-0277-z

摘要: Surfactant-modified natural zeolites (SMNZ) with different coverage types were prepared by loading hexadecyltrimethyl ammonium bromide (HTAB) onto the surface of a natural zeolite. The adsorption behavior of humic acid (HA) on SMNZ was investigated. Results indicate that the adsorbent SMNZ exhibited a higher affinity toward HA than the natural zeolite. HA removal efficiency by SMNZ increased with HTAB loading. Coexisting Ca in solution favored HA adsorption onto SMNZ. Adsorption capacity decreased with an increasing solution pH. For typical SMNZ with bilayer HTAB coverage, HA adsorption process is well described by a pseudo-second-order kinetic model. The experimental isotherm data fitted well with the Langmuir model. Calculated maximum HA adsorption capacities for SMNZ with bilayer HTAB coverage at pH 5.5 and 7.5 were 63 and 41 mg·g , respectively. E2/E3 (absorbance at 250 nm to that at 365 nm) and E4/E6 (absorbance at 465 nm to that at 665 nm) ratios of the residual HA in solution were lower than that of the original HA solution. This indicates that the HA fractions with high polar functional groups, low molecular weight (MW), and aromaticity had a stronger tendency for adsorption onto SMNZ with bilayer HTAB coverage. Results show that HTAB-modified natural zeolite is a promising adsorbent for removal of HA from aqueous solution.

关键词: bilayer surfactant-modified zeolite     hexadecyltrimethyl ammonium bromide (HTAB)     adsorption     humic acid (HA)    

Adsorption property of direct fast black onto acid-thermal modified sepiolite and optimization of adsorption

Chengyuan SU, Weiguang LI, Yong WANG

《环境科学与工程前沿(英文)》 2013年 第7卷 第4期   页码 503-511 doi: 10.1007/s11783-012-0477-9

摘要: The adsorption of direct fast black onto acid-thermal modified sepiolite was investigated. Batch adsorption experiments were performed to evaluate the influences of experimental parameters such as initial dye concentration, initial solution pH and adsorbent dosage on the adsorption process. The three-factor and three-level Box-Behnken response surface methodology (RSM) was utilized for modeling and optimization of the adsorption conditions for direct fast black onto the acid-thermal modified sepiolite. The raw sepiolite was converted to acid-thermal modified sepiolite, and changes in the fourier transform infrared spectrum (FTIR) adsorption bands of the sample were noted at 3435 cm and 1427 cm . The zeolitic water disappeared and the purity of sepiolite was improved by acid-thermal modification. The decolorization rate of direct fast black adsorbed increased from 68.2% to 98.9% on acid-thermal modified sepiolite as the initial solution pH decreased from 10 to 2. When the adsorbent dosage reached to 2.5 g·L , 2.0 g·L , 1.5 g·L and 1.0 g·L , the decolorization rate was 90.3%, 86.7%, 61.0% and 29.8%, respectively. When initial dye concentration increased from 25 to 200 mg·L , the decolorization rate decreased from 91.9% to 60.0%. The RSM results showed that the interaction between adsorbent dosage and pH to be a significant factor. The optimum conditions were as follows: the adsorbent dosage 1.99 g·L , pH 4.22, and reaction time 5.2 h. Under these conditions, the decolorization rate was 95.1%. The three dimensional fluorescence spectra of direct fast black before and after treatment showed that the direct fast black was almost all adsorbed by the acid-thermal modified sepiolite.

关键词: direct fast black     acid-thermal modified sepiolite     adsorption     response surface methodology    

Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads

Yao NIE,Shubo DENG,Bin WANG,Jun HUANG,Gang YU

《环境科学与工程前沿(英文)》 2014年 第8卷 第5期   页码 675-682 doi: 10.1007/s11783-013-0622-0

摘要: Polyethylenimine (PEI)-modified chitosan was prepared and used to remove clofibric acid (CA) from aqueous solution. PEI was chemically grafted on the porous chitosan through a crosslinking reaction, and the effects of PEI concentration and reaction time in the preparation on the adsorption of clofibric acid were optimized. Scanning electron microscopy (SEM) showed that PEI macromolecules were uniformly grafted on the porous chitosan, and the analysis of pore size distribution indicated that more mesopores were formed due to the crosslinking of PEI molecules in the macropores of chitosan. The PEI-modified chitosan had fast adsorption for CA within the initial 5 h, while this adsorbent exhibited an adsorption capacity of 349 mg·g for CA at pH 5.0 according to the Langmuir fitting, higher than 213 mg·g on the porous chitosan. The CA adsorption on the PEI-modified chitosan was pH-dependent, and the maximum adsorption was achieved at pH 4.0. Based on the surface charge analysis and comparison of different pharmaceuticals adsorption, electrostatic interaction dominated the sorption of CA on the PEI-modified chitosan. The PEI-modified chitosan has a potential application for the removal of some anionic micropollutants from water or wastewater.

关键词: clofibric acid     PEI-modified chitosan     adsorption capacity     adsorption mechanism     electrostatic interaction    

Resistance to acid degradation, sorptivity, and setting time of geopolymer mortars

Osama A MOHAMED; Rania AL-KHATTAB; Waddah AL-HAWAT

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 781-791 doi: 10.1007/s11709-022-0862-9

摘要: Experimental evaluations were conducted to determine the water sorptivity, setting time, and resistance to a highly acidic environment, of mortar with alkali-activated ground granulated blast furnace slag (GBS) binder and also of combinations of fly ash and GBS binders. Binders were activated using mixtures of NaOH and Na2SiO3 solutions. The molarity of NaOH in the mixtures ranged from 10 mol·L−1 to 16 mol·L−1, and the Na2SiO3/NaOH ratio was varied from 1.5 to 2.5. Mortar samples were produced using three binder combinations: 1) GBS as the only binder; 2) blended binder with a slag-to-fly ash ratio of 3:1; and 3) mixed binder with 1:1 ratio of slag to fly ash. Mortar samples were mixed and cured at (22 ± 2) °C till the day of the test. The impact of activator solution alkalinity, activator ratio Na2SiO3/NaOH, GBS content on the rate of water absorption were evaluated. After 7, 28, and 90 d of immersion in a 10% sulfuric acid solution, the resistance of a geopolymer matrix to degradation was assessed by measuring the change in sample weight. The influence of solution alkalinity and relative fly ash content on setting times was investigated. Alkali-activated mortar with a slag-to-fly ash ratio of 3:1 had the least sorptivity compared to the two other binder combinations, at each curing age, and for mortars made with each of the NaOH alkaline activator concentrations. Mortar sorptivity decreased with age and sodium hydroxide concentrations, suggesting the production of geopolymerization products. No reduction in weight of sample occurred after immersion in the strong acid H2SO4 solution for three months, regardless of binder combination. This was due to the synthesis of hydration and geopolymerization products in the presence of curing water, which outweighed the degradation of the geopolymer matrix caused by sulfuric acid.

关键词: alkali-activated materials     fly ash     sorptivity     durability of concrete     sodium hydroxide     sodium silicates     reduction in CO2 emissions     sulfuric acid    

Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid)

Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 625-633 doi: 10.1007/s11783-014-0711-8

摘要: A novel hybrid material, Cu-PAA/MWCNTs (copper nanoparticles deposited multiwalled carbon nanotubes with poly (acrylic acid) as dispersant, was prepared and expected to obtain a more effective and well-dispersed disinfection material for water treatment. X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), the X-ray fluorescence (XRF), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), Raman spectroscopy, and thermal gravimetric analyzer (TGA) were used to characterize the Cu-PAA/MWCNTs. ( ) was employed as the target bacteria. The cell viability determination and fluorescence imaging results demonstrated that Cu-PAA/MWCNTs possessed strong antimicrobial ability on . The deposited Cu was suggested to play an important role in the antimicrobial action of Cu-PAA/MWCNTs.

关键词: multiwalled carbon nanotubes     copper nanoparticles     antimicrobial activity     Escherichia coli (E. coil)    

Layered alkali titanates (ATiO): possible uses for energy/environment issues

《能源前沿(英文)》 2021年 第15卷 第3期   页码 631-655 doi: 10.1007/s11708-021-0776-6

摘要: Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.

关键词: layered alkali titanates     photocatalysis     hydrogen evdution     metal ions collection    

碱硅酸反应与碱碳酸盐反应

唐明述

《中国工程科学》 2000年 第2卷 第1期   页码 34-40

摘要:

碱集料反应(AAR)可分为两类,即碱硅酸反应(ASR)与碱碳酸盐反应(ACR)。二者的共同点是与碱发生的化学反应可导致混凝土中集料的体积增大,从而可能使混凝土甚至整个建筑物或构筑物发生膨胀开裂。文章着重从膨胀过程和机理以及岩石的结构特征探讨二者的特性与差异。ASR类型岩石具有碱活性的前提条件是较低的二氧化硅结晶完整度。只有隐晶质、微晶质、玻璃质或发生过应变的二氧化硅才会具有较高的化学活性,导致混凝土破坏。通过系统研究证实,对碱碳酸盐反应,虽然结晶的完整程度以及白云石(CaCO3·MgCO3)分子式中Ca/Mg比也将影响其与碱反应的速率,但起决定作用的是白云石晶体的尺寸及其在岩石中的分布状态和被基质包围的紧密程度。从微观结构得出的这些特征将有助于加深对碱集料反应膨胀机理的认识。文中还介绍了形成活性白云石的地质环境和碱硅酸反应与碱碳酸盐反应的区分方法。

关键词:     集料     硅酸     碳酸盐     混凝土开裂     机理    

The development of ultralightweight expanded perlite-based thermal insulation panel using alkali activator

Damla Nur ÇELİK; Gökhan DURMUŞ

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1486-1499 doi: 10.1007/s11709-022-0881-6

摘要: The International Energy Agency (IEA) states that global energy consumption will increase by 53% by 2030. Turkey has 70% of the world’s perlite reserves, and in order to reduce energy consumption a thermal insulation panel was developed in Turkey using different particle sizes of expanded perlite (EP). In this study, 0–1.18 mm (powder) and 0–3 mm (granular) EP particle sizes were selected, since they have the lowest thermal conductivity coefficients among all the particle sizes. In addition, an alkali activator solution was used as a binder in the mixtures. The alkaline activator solution was obtained by mixing sodium hydroxide solution (6, 8, 10, and 12 mol·L−1) and sodium silicate (Module 3) at the different ratios of Na2SiO3 to NaOH of 1, 1.5, 2, and 2.5. This study aimed to experimentally determine the optimum binder and distribution ratio of EP, with the lowest coefficient of thermal conductivity and the lowest density. The lowest thermal conductivity and the lowest density were determined as 0.04919 W·m−1·K−1 and 133.267 kg/m3, respectively, in the sample prepared with 83.33% powder-size EP, 6 mol·L−1 sodium hydroxide solution, and ratio of Na2SiO3 to NaOH of 1.5. The density, thermal conductivity, and compressive strength of the sample showed the same trends of behavior when the Na2SiO3 to NaOH ratio was increased. In addition, the highest compressive strength was measured in 12 mol·L−1 NaOH concentration regardless of particle size. In conclusion, the study predicts that the EP-based thermal insulation panel can be used as an insulation material in the construction industry according to the TS825 Thermal Insulation Standard.

关键词: expanded perlite     alkali activator     thermal insulation panel     thermal conductivity    

Utilization of alkali-activated copper slag as binder in concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 773-780 doi: 10.1007/s11709-021-0722-z

摘要: This study was focused on developing concrete using alkali-activated copper slag (AACS) as a binder. The properties of alkali-activated copper slag concrete (AACSC) were compared with portland cement concrete (PCC). Different AACSC mixes were prepared with varying Na2O dosage (6% and 8% of the binder by weight) and curing methods. Hydration products in AACSC were retrieved using Fourier-transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) techniques. The test results indicate that the workability of AACSC was lesser than that of PCC. The AACSC mix with 6% Na2O dosage has exhibited similar mechanical properties as that of PCC. The mechanical properties of AACSC were higher than PCC when 8% of Na2O dosage was used. Heat curing was effective to upgrade the strength properties of AACSC at an early age of curing, but at a later age mechanical properties of ambient cured and heat-cured AACSC were comparable. The hydration products of AACSC were not identified in XRD patterns, whereas, in FTIR spectra of AACSC some alkali-activated reaction products were reflected. The AACSC mixes were found to be more sustainable than PCC. It has been concluded that AACSC can be produced similarly to that of PCC and ambient curing is sufficient.

关键词: binder     concrete     mechanical properties     mineralogy     workability    

碱激发矿渣混凝土的水化特性及微观结构研究进展 Review

傅强,卜梦鑫, 张兆瑞, 许文瑞, 元强, 牛荻涛

《工程(英文)》 2023年 第20卷 第1期   页码 162-179 doi: 10.1016/j.eng.2021.07.026

摘要:

碱激发矿渣混凝土(alkali-activated slag concrete, AASC)是一种新型的绿色建材,与普通硅酸盐混凝土相比,

关键词: 碱激发矿渣混凝土     水化特性     孔结构     界面过渡区     微观结构    

The Decarbonization of Construction—How Can Alkali-Activated Materials Contribute?

John L. Provis,Susan A. Bernal,Zuhua Zhang,

《工程(英文)》 doi: 10.1016/j.eng.2023.09.014

井下裂缝连通技术在安棚碱矿的应用

齐铁新,刘建中,秦桂林,董峰

《中国工程科学》 2006年 第8卷 第7期   页码 63-67

摘要:

介绍了在桐柏安棚碱矿,用微地震监测结合水准测量监测与注水井连通的原生裂隙带的理论、技术、方法和监测结果,并据此部署开采井位,把采液井打在与注水井连通的裂隙带上,实现了2条注、采井1 000m米井下裂隙带连通,使安棚碱矿可以连续注水、采出碱液,从而获得较高的生产水平和经济效益。

关键词: 安棚碱矿     湿法采碱     井底裂缝连通     水准测量     微地震监测    

Modeling of alkali-silica reaction in concrete: a review

J.W. PAN, Y.T. FENG, J.T. WANG, Q.C. SUN, C.H. ZHANG, D.R.J. OWEN

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 1-18 doi: 10.1007/s11709-012-0141-2

摘要: This paper presents a comprehensive review of modeling of alkali-silica reaction (ASR) in concrete. Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechanical aspects of the material. The concept of ASR and the mechanism of expansion are first outlined, and the state-of-the-art of modeling for ASR, the focus of the paper, is then presented in detail. The modeling includes theoretical approaches, meso- and macroscopic models for ASR analysis. The theoretical approaches dealt with the chemical reaction mechanism and were used for predicting pessimum size of aggregate. Mesoscopic models have attempted to explain the mechanism of mechanical deterioration of ASR-affected concrete at material scale. The macroscopic models, chemo-mechanical coupling models, have been generally developed by combining the chemical reaction kinetics with linear or nonlinear mechanical constitutive, and were applied to reproduce and predict the long-term behavior of structures suffering from ASR. Finally, a conclusion and discussion of the modeling are given.

关键词: alkali-silica reaction (ASR)     modeling     concrete     mesoscopic     macroscopic    

Operando modeling and measurements: Powerful tools for revealing the mechanism of alkali carbonate-based

《能源前沿(英文)》 2023年 第17卷 第3期   页码 380-389 doi: 10.1007/s11708-023-0872-x

摘要: Alkali carbonate-based sorbents (ACSs), including Na2CO3- and K2CO3-based sorbents, are promising for CO2 capture. However, the complex sorbent components and operation conditions lead to the versatile kinetics of CO2 sorption on these sorbents. This paper proposed that operando modeling and measurements are powerful tools to understand the mechanism of sorbents in real operating conditions, facilitating the sorbent development, reactor design, and operation parameter optimization. It reviewed the theoretical simulation achievements during the development of ACSs. It elucidated the findings obtained by utilizing density functional theory (DFT) calculations, ab initio molecular dynamics (AIMD) simulations, and classical molecular dynamics (CMD) simulations as well. The hygroscopicity of sorbent and the humidity of gas flow are crucial to shifting the carbonation reaction from the gas−solid mode to the gas−liquid mode, boosting the kinetics. Moreover, it briefly introduced a machine learning (ML) approach as a promising method to aid sorbent design. Furthermore, it demonstrated a conceptual compact operando measurement system in order to understand the behavior of ACSs in the real operation process. The proposed measurement system includes a micro fluidized-bed (MFB) reactor for kinetic analysis, a multi-camera sub-system for 3D particle movement tracking, and a combined Raman and IR sub-system for solid/gas components and temperature monitoring. It is believed that this system is useful to evaluate the real-time sorbent performance, validating the theoretical prediction and promoting the industrial scale-up of ACSs for CO2 capture.

关键词: CO2 capture     carbonation     theoretical modeling     operando techniques     reaction visualization    

标题 作者 时间 类型 操作

Improvement of sludge dewaterability with modified cinder via affecting EPS

Weichao Ma, Lei Zhao, Huiling Liu, Qianliang Liu, Jun Ma

期刊论文

Adsorption of humic acid from aqueous solution on bilayer hexadecyltrimethyl ammonium bromide-modified

Yanhui ZHAN, Jianwei LIN, Yanling QIU, Naiyun GAO, Zhiliang ZHU

期刊论文

Adsorption property of direct fast black onto acid-thermal modified sepiolite and optimization of adsorption

Chengyuan SU, Weiguang LI, Yong WANG

期刊论文

Removal of clofibric acid from aqueous solution by polyethylenimine-modified chitosan beads

Yao NIE,Shubo DENG,Bin WANG,Jun HUANG,Gang YU

期刊论文

Resistance to acid degradation, sorptivity, and setting time of geopolymer mortars

Osama A MOHAMED; Rania AL-KHATTAB; Waddah AL-HAWAT

期刊论文

Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid)

Li SHENG,Shuhang HUANG,Minghao SUI,Lingdian ZHANG,Lei SHE,Yong CHEN

期刊论文

Layered alkali titanates (ATiO): possible uses for energy/environment issues

期刊论文

碱硅酸反应与碱碳酸盐反应

唐明述

期刊论文

The development of ultralightweight expanded perlite-based thermal insulation panel using alkali activator

Damla Nur ÇELİK; Gökhan DURMUŞ

期刊论文

Utilization of alkali-activated copper slag as binder in concrete

期刊论文

碱激发矿渣混凝土的水化特性及微观结构研究进展

傅强,卜梦鑫, 张兆瑞, 许文瑞, 元强, 牛荻涛

期刊论文

The Decarbonization of Construction—How Can Alkali-Activated Materials Contribute?

John L. Provis,Susan A. Bernal,Zuhua Zhang,

期刊论文

井下裂缝连通技术在安棚碱矿的应用

齐铁新,刘建中,秦桂林,董峰

期刊论文

Modeling of alkali-silica reaction in concrete: a review

J.W. PAN, Y.T. FENG, J.T. WANG, Q.C. SUN, C.H. ZHANG, D.R.J. OWEN

期刊论文

Operando modeling and measurements: Powerful tools for revealing the mechanism of alkali carbonate-based

期刊论文